
ED 038 023

TITLE

INSTITUTION

SPONS AGENCY
PUB DATE
CONTRACT
GRANT
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

95 EM 007 914

Progress Eeport; Stanford Program in
Computer-Assisted Instruction for the Period July 1,
1969 to September 30, 1969.
Stanford Univ. , Calif. Inst. for Mathematical
Studies in Social Science.
Office of Education (DHEW) , Washington, D.C.
30 Sep 69
GEC -0 -8- 001209- 1806
OEG-0-9-140401-4147
47p.

EDRS Price MF-$0025 HC-$2.45
*Annual Reports, *Computer Assisted Instruction,
Program Descriptions, Programing, Research and
Development Centers

During this reporting period, the Drill-and-Practice
Mathematics Program implemented a pilot version of the fixed strands
curriculum. Data is presented illustrating the use of the program at
the various participating schools. Adjustments were made to the
Drill-and-Practice Reading Program Curriculum. Extensive recoding of
the curriculum of the Logic and Algebra programs was undertaken. An
analysis of various syntactical operations was made and work
proceeded on de-bugging the program. Some revisions, changes, and
additions were made to the Second-year Russian program. Work
continued on three computer-assisted instruction (CAI) systems of
teaching programing--AID, SIMPER, and LOGO. These and some of the
other programs needed revising in order to be run on the PDP-10
computer. Some basic research into the field of CAI itself was
carried on. Work continued on updating and perfecting the hardware
and software systems at the Institute. The report also contains a
brief outline of future plans and a list of lectures and publications
by members of the Institute staff. (JY)

MIN

f\J
CD

te\

C:)
LLJ 0.)

0 4-)0
.0 a)

0 0 0
e-1 $.4 U 0cod 1-1

ir Ct1

r--1 4 d)
u a)

.1-1 4.J be
C..) 4-4 c

124
H 0 4-1 04

1-1

W
-1 44i

W .4 r-I4J 0 W '0rl W cd

4-1 W

a) ,e) 0
1-1 W 0

eel 'd W

Cer4/)

0

4-1 0 M

W

0 0 0C144-1

C.) 0 QJ er4
r-1

0 1-1 cd
r4

cu ,
cd
0 m

4-1

*14 CD

0.)
124 >1

cd

1-4 cd
4-34 0
0 cd 4-1 0a) 4 mSOcum,0 P
c.) a, cu0 curd

m.Z cd
cu
60 14

0.)V
,-1C4

H
0.4 M
W M

r0 0 .0
4J M 44i /4

0./
441 "OWPO

44 4 0.) 44-1

441

W
0.) 0rn P 0 I-I

a)
4-1

c.)
0 r4
1-1 W W
04 14 0 r0

cd a)

0.)

gb .5
4-4 cts cu

$.4

0 r-I
a) rc)

0
P W

04

0 0
0 0cd 0 rd

4-4 u
ri 0

cn PC)
$4

0
cd

cd
4-1 .0 m

PROGRESS REPORT

U.S. DEPARTMENT OF HEALTH. EDUCATION
& WELFARE

OFFICE GF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

STANFORD PROGRAM IN COMPUTER-ASSISTED INSTRUCTION

for the period

JULY 1, 1969 to SEPTEMBER 30, 1969

Office of Education Contract OEC-0-8-001209-1806

National Aeronautics and Space Administration
Grant NGR-05-020-244

National Science Foundation Grant NSFG-18709

National Science Foundation Grant NSF GJ-197

National Science Foundation Grant NSFG J-443X

Stanford Subcontract under Office of Education
Grant No. OEG-9-8-685083-0041

with Ravenswood. City School District

Stanford Contract under National Science Foundation
Grant NSF GY-5308

with Tennessee A. and I. State University

Office of Education. Grant 0EG-0-9-140401-4147

Gallaudet College Contract

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Table of Contents

I. Major Activities of the Reporting Period

A. Drill-and-practice Mathematics Program

1. Strand Program

2. Use of the System in Schools

3. California Schools

4. Seattle Classes

5. Tennessee Classes

6. Washington, D. C. Schools

1

1

5

6

12

12

12

B. Drill-and-practice Reading Program 15

1. Curriculum; Additions, and Adjustments '15

2. Systems 16

3. Word Meaning Strand 16

4. Support Program 17

5. Audio 19

C. Logic and Algebra Program 19

D. Second-year Russian Program 23

E. Computer-assisted Instruction in Programming: AID 24

1. The Instructional System and Its Implementation 24

2. Design of Revised System 25

F. Computer- assisted Instruction in Programming: SIMPER and LOGO 31

1. Background of the Project 31

2. Curriculum Revisions 32

3. The Classroom 32

G. Basic Research in CAI

H. Stanford PDP-1/PDP-10 System

1. Hardware

2. Software

35

38

38

39

II. Activities Planned for the Next Reporting Period 40

A. Drill-and-practice Mathematics Program 40

B. Drill-and-practice Reading Program 41

C. Logic and Algebra Program
41

D. Computer-assisted Instruction in Programming: AID 41

E. Computer-assisted Instruction in Programming: SIMPER and LOGO 42

F. Stanford PDP-1/PDP-10 System 42

III. Dissemination 42

A. Lectures
42

B. Publications
44

ii

I. Major Activities of the Reporting Period

A. Drill-and-practice Mathematics Program

1. Strand Program

A pilot version of the strand program, referred to as fixed strands., has been

written and is being implemented during the academic year 1969-70. The pilot

version differs from the full version in two major respects; the problems are

written and stored in the computer rather than generated on-line, and the rule

for sampling problems has been simplified, so that only the objective distribution

determines the proportion of problems from each strand presented to the student.

In addition, a special function for movement throagh the strands has been defined

for the fixed strands.

Implementation of the fixed strands has two important advantages. First

the massive task of writing the computer program to run the strands has been

separated into two parts, and the basic program can be debugged and put into

operation before adding the subroutines necessary to generate problems an-line.

Second, data can be obtaired that bear directly on many of the assumptions which

had to be made to write the strand ymgram. These include assumptions about

latencies, error rates, and homogenelty of equivalence classes.

Fixed Strand Curriculum

The fixed strand curriculum retains the basic structure of the strand

curriculum, i.e., the partition of the substance of elementary-level mathematics

into 15 strands, and each strand into a set of equivalence classes. For the

fixed strand curriculum, each strand consists of a set of problems in a fixed

order, with the order within each equivalence class determined by randomizing the

order of a set of problems written to satisfy the definition of the class.

Number of problems in a class. The number of problems written for each

equivalence class depends on the expected number of problems to be worked in each

strand, at each half-grade level, and the error rate assumed to describe

performance. Thus, if the average latency for a problem, L, the total time spent

at the computer, T, and the percentage of problems for a given strand, P, are

known for a given half. year, the expected number of problems, EP, is given by

1

the formula

EP = x P (EP = Lx P)

and the number of problems written, PW, is given by the formula

PW =
1+2q

EP

(1)

(2)

where q is the assumed error rate. The second formula requires some comment.

In the basic strand program, when a student makes an error he is immediately

presented with an additional problem from the same equivalence class, and this

problem is not counted, for purposes of meeting the criterion performance

necessary to advance to the next class. This fact (the presentation of the extra

problem) was incorporated into formula (2), although in the context of the fixed

strands, where problem order is fixed, this procedure has a quite different

meaning and will not be followed. An error rate, q, of .4 was chosen on an

intuitive basis. It is higher than the average error rate found for the drill-

and-practice program. However, it was felt that since all problems would be

presented in a mixed format, the error rate would quite likely be higher than

that previously found.

The number of problems written for each strand for each half year is

presented in Table 1.

Rule for sampling problems. The objective probability distribution, f (j),

determines in each instance the strand from which a student receives a problem.

The actual problem the student receives depends on his performance on the past

several problems from that strand in the following way: the direction of

movement on the strand depends on whether the last problem worked was correct

or incorrect, and the distance moved depends on the length of the string of

correct or incorrect responses. A string of responses is said to start at a

change in response, so that if problem k is the first in a string, and the

response is correct (0, then the response on problem k-1 was incorrect (I).

The unit of distance is one problem. The details of the movement scheme are

shown in Table 2. The set of distances chosen is a subset of the Fibonacci

sequence, Fri+2 = Fn+Fri+1, which starts with the third term of the sequence,

and ends with the sixth term.

2

T
A
B
L
E

1

N
u
m
b
e
r

o
f

P
r
o
b
l
e
m
s

W
r
i
t
t
e
n

f
o
r

E
a
c
h
S
t
r
a
n
d

f
o
r

E
a
c
h

H
a
l
f

Y
e
a
r

S
t
r
a
n
d

,

1
.
0

1
.
5

2
.
0

N
u
m
b
e
r

C
o
n
c
e
p
t
s

:

2
5
0

1
2
0

1
2
0

H
o
r
i
z
o
n
t
a
l

A
d
d
i
t
i
o
n

2
2
0

1
9
0

1
9
0

H
o
r
i
z
o
n
t
a
l

S
u
b
t
r
a
c
t
i
o
n

1
2
5

9
5

1
1
5

V
e
r
t
i
c
a
l

A
d
d
i
t
i
o
n

9
5

8
o

8
5

V
e
r
t
i
c
a
l

S
u
b
t
r
a
c
t
i
o
n

8
o

8
5

E
q
u
a
t
i
o
n
s

7
0

7
0

M
e
a
s
u
r
e
m
e
n
t

4
0

6
o

5
0

4
o

5
0

5
0

H
o
r
i
z
o
n
t
a
l

M
u
l
t
i
p
l
i
c
a
t
i
o
n

8
0

4
5

1
2
0

7
0

L
a
y
s

o
f

A
r
i
t
h
m
e
t
i
c

3
0

5
0

4
0

V
e
r
t
i
c
a
l

M
u
l
t
i
p
l
i
c
a
t
i
o
n

1
2
0

4
0

D
i
v
i
s
i
o
n

1
5
0

7
0

F
r
a
c
t
i
o
n
s

3
5

2
5

H
a
l
f
-
y
e
a
r

2
.
5

3
.
o

3
.
5

4
.
o

9
5

8
5

3
5

5
5

8
o

1
0
0

6
5

8
0

3
0

1
7
0

1
5
0

5
0

7
0

1
4
o

1
5
0

6
5

7
0

1
0
0

1
2
0

1
0
0

1
4
0

4
.
5 5
0

5
.
o

5
5

1
5

2
0

1
5

2
0

5
0

4
5

5
0

4
o

4
0

!
I
5

3
0

3
0

1
0
0

4
5

1
0
0

9
0

1
6
0

1
2
0

5
.
5

6
.
o

6
.
5

7
0

1
0
0

6
o

1
0

1
0

6
0

4
o 3
0

2
0

3
0

1
6
0

D
e
c
i
m
a
l
s

5
5

4
o

3
o

7
o

N
e
g
a
t
i
v
e

c
u
m
b
e
r
s

6
0 4
0

6
5

4
0

1
0

1
5

2
0

1
5

4
0

1
5

1
5
0

1
6
0

5
0

2
4
o

2
0

2
5

TABLE 2

Movement Scheme Adopted for Fixed Strands

Type of Response Length of String Distance Moved

Correct 1

2

3

4

>1.

+1

+2

+3

+5

+5

Incorrect 1

2

3

4

>4

-1

-2

-3
-4

-5

L.

Movement on the strand structure. The movement scheme adopted (shown in

Table 2) has an important feature: it is not necessary to retain a history of a

student's performance prior to the last worked problem to determine future

movement. All that need be kept is a record of a signed number representing the

distance moved. Thus, if the number kept for a student is -3, and he works problem

k correctly, the number kept for him will be +1, and he will next be presented

with problem k+1. Or, if the number retained is +3, and he works problem k

correctly, the number kept will be +5, and the next problem presented will be

k+5.

One of the objectives of the strand program is to examine in detail I

individual differences in performance. For this purpose it is important tai have

a movement scheme which allows great variation in movement rates. The scheme

chosen has this property A student giving a correct response to every problem

would be able to move through an entire year's work in about six weeks.

Initial grade placement on strands. The grade placement obtained for each

student from his performance on the computation section of the SAT, or actual

grade in school, whichever is lower, will be used to determine initial placement

on the strands. However, since we have no evidence that this will be an

adequate criterion for assigning grade placement, a scheme will be used to

accomplish large changes in grade placement, during the first 20 days a student

is signed onto the system. If, in any single session, a student's error rate

is greater than .8, he will immediately be moved down half a grade level. If

the student's error rate is less than .05, he will be moved up half a grade

level.
1

For students whose error rates fall between .8 and .05, movement will be

governed entirely by the scheme already described.

2. Use of the System in Schools

The total number of drill-and-practice lessons in mathematics during the

summer months was 14,485. Most of the lessons were taken during the month of

July and the first day of August. During the approximate period of August 2 to

September 1, no schools were in session and no students took lessons on the

system. In early September, schools reopened and classes were gradually

restarted as indicated in the following tables.

1
Specifically, the student will be moved to the beginning of a half grade

which is greater than one half a grade, but less than a full grade level from
his current position, so that the new position will always be at the first
equivalence class of a half grade.

5

Tables 3 and 4 give the total number of lessons taken each day in each area

and the total lessons for each area each month. August 1 is included as the last

entry in Table 3 along with the data for July. The number of reading and logic

lessons taken is also shown in Table 3 and may be referenced in later sections

of this report.

Tables 5 and 6 give a daily class breakdown of the number of lessons taken.

The numbers under the headings "Calif. (10,0)" indicate class numbers. The

class numbers for Brentwood schools were 6, 7, 8, 9, and 11, etc.

3. California Schools

The entry "California Schools" during this time period includes special

accounts, hourly users, and demonstrations. Although Brentwood is in California,

it is recorded separately.

The schools in the Ravenswood School District, East Palo Alto, California

were Belle Haven, Brentwood, Kavanaugh, and Willow. The number of lessons taken

by each school is shown in Tables 5 and 6. Table 7 lists the concept blocks

selected by teachers for each class, the class number, the number of students

in each class, and the number of students working in each block on August 1

or the end of their summer session. Several interesting features of the program

are documented here. One is the variety of the block sequences selected for

different classes. Second is the class sizes for which different sequences

were chosen, and third is the student& progress through the lessons as

indicated by their position at the end of the term. For example, of the 30

students in class 52 in Belle Haven School, the concept blocks selected were 102,

106, 110, 111, 112; 133, 114. Each block contains work for seven sessions on

school days if one lesson is taken each day. One student was working ii Block

112 which means he completed at least 28 lessons on the system by the end of

the term. The same entry also shows that five students did not complete the

first block. These students either enrolled and dropped out of summer school

all together or for some other reason failed to take daily lessons as intended.

In the iftture, more care will be taken to include only those students who complete

a reasonable amount of the program in comparative studies.

6

TABLE 3

DAILY SUCCESSFUL RUNS ON DRILLS
JULY, 1969

DAY RAVNS i CALI F i TENN is EAt TLE TOTAL fitii5;:..C-Odic.

7-1
7-2

:7.5
7-7
7-8
7-9
7-10
7-11
7-14

' 7-1 5
7-16
7-1 7
7-16
7-22
7-23
7-24
7-25
7 -28
7-29
7-30
7-31
8-1

40 6
609
493
62 6
833
812
921
824
8t 6
797
666
786
651
739
851
892
853
821
674
648
685
441

15854

1 28
39
22

8
5
2

16
13
0

18
17
13
11
13
18
13
22

6
19

4
9 1

33

329 ;

41 0
15 0
43 8

a 22
2 23

4 8 9
70 11

0 14
89 16
52 31
55 41
23 51
69 65

12 0 71
81 9
98 19

0 20
0 10

4
6

15
9

61 536
717
599
679
883
910

1062
893
965
906
779
859
767
914
997

105C
920
845
693
755
737
494

99
134
89

176
312
332
378
309
300
282
195
277
188
P2 6
270
332
301
352
217
213
228
132

54
41
42
43
48
55
56
50
39
41
37
36
42
47
47
45
18

0 0
93 10
23 20

0 20

92 5 852

7

17960 5342 454

7

a

TABLE Ii

DAILY SUCCESSFUL RUNS ON DRILLS
SEPTEMBER 1969

I-, - . . _
...,_-:...-

DAY CALIF ! RAVN WASH.-.TEN-0_. OED-40.1: TOTAL1--- ____..4_._..........._ ..t...._:.____ ..__._.
9-2 , , 2 I
9-3 0 2 i I

1

,
,

2
9-4 0 12 ; 3 1 i 15
9-5 1 15 ! 0 i ,

,

16
9-3 5 I 28 0 I 33
9-9 5 * 1 1

, 6!
9-10 4 47; 4 I i 55

I9-11 22 5 12 : i 39
9-12 1 110 16 t 57 I

i 184
9-15 29 Bj 91 1 0! .

, 128
9-16 2 14 20 i 2 i i

! 38
9-17 0

1 85 106 1 0 I
p

191
;

9-1g 0 205 32 ! 0 ! , 237 I
9-19 0 242 67 i 0

.

1 309 1
9-22 0 177 135 i 304 i i 616
9-23 5 130 j 27 i 272 i 3
9-24 2 290 163 I 316 1

4774i 1

i

9-25 17 201 1 43 I 150 1
;

411
9-26 6 381 207 1 221 1 815 1

390153 i9-29 1 550 1099 1

9-30 2 643 64 1 407 ; 3 1124
w. ea es 1. a"."1. a. a. a.

103 3151 1149 2119 3 6525

8

i
o

M
O
N
T
H
L
Y

D
I
S
T
R
I
B
U
T
I
O
N

J
U
L
Y
.
,

T
A

B
L

E
 5

O
F

D
R
I
L
L
S

R
U
N

P
E
R

S
C
H
O
O
L

1
9
6
9

1
2

3
7

R
9

1
0

1
1

1
4

1
5

1
6

1
7

1
3

C
A
L
I
F
.

1
0

0
9

9
1

0
0

0
0

0
5

0
0

0

0
2
8

3
0

1
3

7
5

2
1
6

1
3

0
1
3

1
7

1
3

1
1

B
R
E
N
T
W
O
O
D

6
9
5

5
4
7

1
5
3

1
3
6

1
4
6

1
6
5

1
6
3

1
3
1

1
8
1

1
4
E

1
5
2

1
4
3

1
2
9

7
1
5
5

0
1
8
6

2
5
6

3
6
3

3
7
1

4
0
5

3
9
4

3
7
2

3
7
1

3
0
3

3
E
0

2
7
3

8
S
5

0
0

1
0
0

1
6
2

1
4
4

2
0
7

1
7
2

1
E
4

I
F
?

1
4
0

1
8
5

1
5
9

9
7

0
8
2

7
1

8
7

8
6

9
7

9
6

8
5

S
O

6
6

7
0

5
z

1
1

6
4

6
2

7
2

6
3

7
0

4
6

-

4
9

3
1

4
1
6

5
8

3
2

T
E
N
N
E
S
S
E
E

3
1
4
'

1
5

1
6

0
1

4
4

5
9

0
4
0

5
1

3
5

4
2
3

1
2

2
7

0
2
7

3
1

4
1
1

0
4
9

1
2
0

1
9

4
6

S
E
A

T
I
L
E 4
0

3
4

2
4

2
5

2
0

2
4

3
1

3
3

2
8

P
P

2
2

1
9

1
2

2
2
1

2
0

1
7

1
7

2
0

2
2

2
4

2
3

2
1

1
1

1
9

1
6

2
1

1
3

3
2

0
0

1
0

0
2

3

M
M

M
M

5
3
6

7
1
7

5
9
9

6
7
9

3
8
3

9
1
0

1
0
6
2

8
9
3

9
6
5

9
0
6

7
7
9

8
5
9

7
6
7

L
O

G
IC

 A
N

D
R
E
A
D
I
N
G

C
O
U
N
T

J
U
L
Y
,

1
9
6
9

L
O
G
I
C

R
U
N
S

D
A
T
E

3
7

2
1
0

1
1

1
4

1
5

1
6

1
7

1
S

9
.
2

2
3

2
4

2
5

2
F

2
2

2
3

g
1
1

1
4

1
6

3
1

4
1

5
1

6
5

7
1

9
1
9

2
0

1
0

R
E
A
D
I
N
G

D
A
T
E

1
9

3
7

8
1
0

1
1

1
4

1
5

1
6

1
7

1
8

2
2

.
2
3

2
4

0
2
7

1
3
4

2
6

4
4

5
7

3
4

4
9

3
2

3
1
6

4
6

3
?

7
1
0

3
1

6
1
A

0
1
9

9
2
5

2
6

4
9

1
7

4
7

2
3

2
F

2
7

2
1

3
4

4
5

5
6

7
3
9

C
2
5

1
0
5

1
7
7

2
1
7

1
9
9

2
0
C

1
9
1

1
8
7

1
3
9

1
7
3

1
1
6

1
4
3

1
5
0

1
6
9

f7
1

0
1
9

9
3
8

3
3

5
7

3
9

4
0

3
6

3
9

4
4

1
5

2
3

5
0

5
7

0
0

0
9

1
4

2
2

2
4

2
1

1
9

1
5

5
1
2

4
1
9

1
5

1
9

_
-
_

IM
ID

M
 M

M
M

M
I

3
A

F
9

1
7
6

3
1
2

3
3
2

3
7
3

3
0
`
'

3
0
0

2
7
2

1
9
5

2
7
7

1
7
3

?
2
6

2
7
0

3
3
2

2
2

2
3

2
4

2
5

2
3

3
0

0
1
3

0

1
0

1
8

1
3

9
6

1
6
2

1
7
1

1
5
6

1
5
6

1
3
4

2
8
F

3
6
3

3
6
3

3
4
7

3
6
6

1
3
4

2
3
0

2
3
9

2
7
6

2
4
0

8
9

8
0

7
6

7
3

7
3

1
6

7
4
P

1
P

6
9

1
1

4
0

0
0

5
1

7
0

5
8

0
0

2
6

2
F

2
4

3
0

0

1
6

1
3

1
9

1
5

1
8

0
1

4
0

0
M

M
M

M
M

9
1
d

9
9
7

1
0
5
0

9
2
0

R
4
5

2
9

3
0

3
1

1
T
O
T
A
L

A
6

1
5

9

2
5

P.
2
.

2
9

3
0

3
1

4
2

4
7

1
2

3
5

4
7

2
7

4
9

4
1

1
6
8

2
1
1

1
0
4

9
6

9
g

7
5

F
2

5
9

5
4

7
5

1
9

1
0

2
3

7
2

3
0
1

;;;
 2

1;
21

3
;;;

I
7,

2
9

3
0

3
1

1
T
O
T
A
L

9
1

3
2

5
5

1
0

'
3

6
3
1

2
7
4

1
3
6

1
5
0

1
1
9

9
1

3
5
6
4

2
2
5

2
1
P

2
2
2

1
4
3

6
3
6
9

2
1
6

1
9
0

2
4
7

1
0
3

3
6
4
6

.
9
2

8
0

7
4

9
0

1
6
2
2

5
1
0

2
2

1
4
'

6
5
3

0
0

C
0

4
2
2

0
9
3

2
3

0
5
0
3

0
0

0
0

4
4
8

0
1
0

2
0

2
0

3
8
8

0
0

0
0

1
6

M
M

41
0

M
M

O
O

M

6
9
3

6
4
3

7
3
7

4
9
4

1
7
9
6
0

4
5
4 1

T
O
T
A
L

2
1

5
6
3

3
0

6
7
4

5
7

2
9
7
9

2
3

8
6
6

1
2
6
0

1;
;.

53
42

T
A

B
L

E
6

M
O
N
T
H
L
Y

D
I
S
T
R
I
B
U
T
I
O
N

O
F

D
R
I
L
L
S

R
U
N

P
E
R

S
C
H
O
O
L

S
E
P
T
E
M
B
E
R

1
9
6
9

2
3

4
5

8
5

1
0

1
1

1
2

1
5

1
6

1
7

1
8

1
9

2
2

2
3

2
4

2
S

2
6

2
9

3
0

T
O
T
A
L

D
E
M
O
S

i

S
P
E
C
I
A
L

A
C
C
T
S
.

0
I

0
0

1
5

S
3

3
0

2
6

0
0

0
0

0
1

1
1
6

6
I

0
6
9

o
0

o
o

0
o

1
1
9

1
3

2
0

0
0

0
4

I
1

0
0

2
3
4

C
A
L
I
F
.

S
C
H
O
O
L
S

6
3

3

B
R
E
N
T
W
O
O
D

2
0

0
0

1

3 4
0 0

0 0
0 0

0 0
3

0
0

I
I

1,
1

2
1
2

1
4

W
A
S
H
/
R
O
T
O
R

2
0

0
0

0
0

2
9

0
0

3
0

T
E
N
N
E
S
S
E
E

3
0
0
0
0
0
0
0

3
9

0
0

0
0

0
*

0
0

0
0

0
4
3

1
8
2

1
7
6

1
6
1

9
8

2
6
6

1
5
1

3
0
2

4
1
1

4
8
7

2
2
7
8

0
*

0
0

0
0

0
0

0
I

0
6

1
2

9
4
8

8
6

9
9

2
6
1

0
*

o
0

0
0

0
0

0
o

0
0

So
so

 0
*

0.
0

0
0

0
0

0
0

0
0

0
0

5
0

2
8

*
4
7

5
1
1
0

8
1
4

4
2

2
3

6
5

1
6

2
6

2
2

4
1

3
1

5
3

6
2

6
1
2

O
0

0
1
0

1
2

9
0

2
0

1
0
4

2
7

6
4

1
3
5

2
7

1
6
3

4
3

2
0
7

2
5
6

6
4

1
1
2
2

0
1

4
2

4
I

0
2

5
3

0
0

0
0

0
2

0
2
7

0
0

0
0
0

0
0
0
0
2
2

4
2

8
1

1
6
8

2
6
4

3
1
9

8
9
6

0
0

0
0

5
7

0
2

0
0

0
3
0
4

2
5
0

2
7
4

6
9

5
3

1
2
6

8
8

1
2
2
3

C
O

M
M

01
.0

 4
1,

41
D

E
,

*
00

. U
D

11
10

O
P

2
2

1
5

1
6

3
3

6
S
s

3
9

1
8
4

1
2
8

3
8

1
5
1

2
3
7

3
0
9

6
1
6

4
3
4

7
7
1

4
1
1

8
1
5

1
0
9
9

1
1
2
4

6
5
2
5

S
C
H
O
O
L

H
O
L
I
D
A
Y

L
O
G
I
C

R
U
N
S

L
O
G
I
C

A
N
D

R
E
A
D
I
N
G

C
O
U
N
T

S
E
P
T
E
M
B
E
R

1
9
6
9

D
A
T
E

2
3

4
5

8
S

I
I

I
I

1
2

1
5

1
6

1
7

1
8

1
9

2
2

2
3

2
4

2
5

2
6

0
0

0
0

4
8

8
0

0
0

0
0

0
0

0
1
4

1
2

2
3

2
3

S
L
A
R
T
R

D
A
T
E

2
.
3

4
3

8
9

1
0

1
1

1
2

1
5

1
6

1
7

1
8

1
9

2
2

2
3

0
0

4
1
8

1
0
0
4

1
4
4
1

*

3
4
5
0

2
8
8
3
2
7
5
4

6
6
6
5

5
4
2
9
3
1
2
5

1
6
9
1

5
3
4
8

5
2
9
5

3
9
2
4

*

S
C
H
O
O
L

H
O
L
I
D
A
Y

2
9

3
0

T
O
T
A
L

0
1
8

1
1
0

2
4

2
5

2
6

2
9

3
0

T
O
T
A
L

F
R
A
M
E
S

2
9
6
0

5
6
2
1

3
6
8
9

3
7
1
3

5
5
5
3

6
5
,
7
0
7

CLASS CONCEPT POSITION AT THE END OF
SIMMER SCHOOL - 1969

SEATTLE CLASSES
BRENTWOOD CLASSES

CLASS NO. OF CLASS NO. OP

CONCEPT OR DER NO. STUDENTS STUDENTS PER CONCEPT CONCEPT ORDER NO. STUDENTS STUDENTS PER CONCEPT

NO SET ORDER 14 9 101 113 210.214 102 69 4 102

I 3 2 3 4

NO SET ORDEn 301 307 313 313 102,101 70 39 102 101

2 3
37 I

NO SET ORDER 19 6 101 102 103 104 102.1069110114 71 31 102 106 110
2 1 1 f 6 9 13

NO SET ORDER 20 2 114 118 102,106,110 -114 72 29 102 106 110 111 112
1

2 4 12 1 I

NO SET ORDER 21 5 601 621 2014029201.2069211 73 34 201 202 206 207
4 I 212 6 5 14 9

NO SET ORDER 22 3 101 102 104 2019202920640139211 74 40 201 202 206 207 201
1 212 S 11 6 10 5

NO SET ORDER 23 3 401 421 525,126,403,314,320 75 8 525 403 314
1 306,309 3 2 I

NO SET OR DER 24 601 604 525,926,403,314,320 76 32 525 528 403 314

1 I 306,309 II 1 7 6

NO SET ORDER 25 4 101 105 108 525,526,502,410,414 77 35 525 526 50! 410 414
2 1 1 404,406 7 5 11 7 2

NO SET ORDER 26 2 501 505 502,503,507,506,523 716 37 502 503 507
1 1

506 23 13 1

NO SET ORDER 27 2 101 107 525,526o0e96249604 79 31 525 526 502 624 604
I 1 60/9609 16 4 7 3 1

NO SET ORDER 26 3 201 222 525,526,502,624,604 60 9 525 526 502

1 2 601 609 2 2 5

NO SET ORDER 29 4 407 410 411 413 525,521,502,410,414 '82 7 521 526 502 410

1 I I 1
404,406 2 2 2 1

KAVINAUGN CLASSES

NO SET ORDER 30 6 101 104 106 115 123
2 1 I I 1

CLASS 11041 OP

NO SET ORDER 31 2 201 214 CONCEPT ORDER 1109 STUDENTS STUDENTS PER CONCEPT

1 1

102,101 25 34 102 101

NO SET ORDER 32 1 204 33 I

NO SET ORDER

TENNESSEE CLASSES

33 I 504 102,101 66
1

315 102 101
36 I

1029106911091119112 137 36 102 106 110 III 112

CLASS NO. OP 113,114 6 11 13 4 2

CONCEPT ORDER NO. STUDENTS STUDENTS PER CONCEPT
1029106911091119112 NY If 102 106 110 114

401 410 40 14 401 402 403 404 113,114 I 2 I

2 2 2
201,202,206,207,206 69 26 201 202 206 207 206

501 510 41 12 501 502 506 507 506 211,212 14 I 10 I I

4 1 2 2 3
201920292069207920S 90 36 201 202 206 207 206

701 711 43 4 702 703 211,212 15 6 11 3 I

3 1

BELLE HAVEN CLASSES 525.526.403,314,320 91 36 525 526 403 314 309
....... ft... 306,309 19 5 10 I I

CLASS NO. or 525,525,403,314,520 92 15 525 403 314 306

CONCEPT ORDER NO. STUDENTS STUDENTS PR CONCEPT 306,309 3 6 L I

10291069110-114 92 30 102 106 110 111 112 52509249902041014" 93 IC 525 526 502 410
5 5 9 4 1 404,402 5 I 6 1

10291069110+114 53 25 102 106 110 III ses,see,5oe,41o,414 94 11 525 526 502 414
10 4 7 4 404,406 2 5 3 1

20192029206-2049211 S4 16 201 202 206 207 52595269502,524507 99 23 529 526 502 524 507

212 9 3 3 1 503,506 7 2 10 3 I

201920292062069211 55 16 201 202 206 525,526,502,524,507, 96 11 925 526 502 524 907
212 2 3 3 503,506 2 2 2 2 I

523,528,403,314,320 56 17 M5 121 403 314 52595269502962494049 97 27 525 522 502 224 304 609

306,309 6 3 6 2 CO19609 10 4 11 2 1 2

92590260039314,320
306,309

57 17 125 MR 403 WILLOW CLASSES

a 4 6

125992119502941094149
404,406

56 11
CLASS

M5 928 902
2 3 2 CONCEPT ORDER NO.

409 OR
STUDENTS STUDENTS PER CONCEPT

3esoe600to10,414
404,401

59 23 MS MS 902 410 1029106911091119112 101

7 3 II 2 1 139114

34 102 106 11C 111
22 5 3 3

M59526950299249507
503,903

co 12 Me 502 924 2019202920692079206 102

1 6
2 11 .212

24 201 202 206 207
4 6 9 5

5259M119502,se4,507
903,506

61 10 925 no 502 1124 5029924 103

2 2 4

29 502 "4 000
IS 9

529,526,502,624,104
6019601

Q 26 925 9213 502 624 403,314 104

9 7 IS 2

36 403 314
31 6

529,926,502,624,604
601.609

a 6 /e5 902 124 403,314,320,306,309 105

3 1 2

7 403 314
9 2

101 -106 64 10 101 102 103 104
2 I 6 1 . t

1

4. Seattle Classes

Two teletype terminals were used in Seattle, one in the Experimental Education

Unit of the University of Washington and the other in a nearby school for deaf

and handicapped children. The entry in Table 7 "no set order" indicates that a

considerable reordering of lesson blocks took place. In several cases the students

took the lessons a second time. The variety of levels of lesson difficulty is

shown in the position of the students at the summer session. Block numbers whose

first digit is 1 are at first-grade level. Block numbers beginning with the

digit 2 are second-grade level, etc. Also notice the small number of students

in each class. This indicates that the lessons were prescribed for individuals

or very small groups and is an indication of the degree of individualization

possible with the flexibility offered by a CAI system. The researchers in Seattle

made almost daily adjustments in lesson sequences.

5. Tennessee Classes

The number of students at Tennessee A. and I. State University enrolled in

CAI classes was small, 30 in all. These were assigned in three different

"computer" classes as shown in Table 7. Each class was at a different level of

achievement as indicated by the first digits of each concept block number.

There was considerable variety in the number of lessons completed by different

atudents.

6. Washington, D. C. Schools

Kendall School for the Deaf in Washington, D. C. did not have a summer

session. Regular classes began in early September as shown in Table 6. To date

their achievement has been very satisfactory, and they have expressed considerable

interest in programming courses in several content areas other than mathematics.

During the 1968-69 school year, preliminary results reported by Kendall

School on achievement of both high school and elementary-school students were

very encouraging. Approximately 6o per cent of the project population were of

high school age. The remaining 40 per cent consisted of students from several

age levels, some as young as 9 years old. According to the information we have

been given, 30 per cent of the 90 students who participated in this project may

be classified as multiply-handicapped deaf children from the inner city. All

students in the secondary and elementary grades took daily lessons in arithmetic,

and selected students in junior and senior high school took the tutorial logic

and algebra program.
12

The data from the first five months o1 operation in elementary mathematics

at Kendall School are summarized by grade equivalence scores in Figure 1. Note

that the normal expectancy for grade-placement gain for deaf children is one hall'

the number of calendar months. That is, deaf children gain, on the average, one -

half year on standardized achievement tests for each year in school. As shown

in Figure 1, 64 per cent of the students achieved a gain of nearly a half year

in just five school months. The tests on which these data are based are the

Stanford Achievement Test, the Metropolitan Achievement Test, and the Wide Range

Achievement Test. The data graphed in Figure 1 are the mean grade equivalence

scores on the computational skills sections from the three tests.

The data indicate that the increase in performance on the mathematics

section of the battery was greater than the increase in performance on the

entire battery.

Pupil reaction to the program as reported by the Kendall School staff has

been highly favorable. Students were eager to put forth as much effort as they

could in attempting to improve their performances. The looks of disappointment

on the faces of students who did not get to use the CAI on a particular day,

for whatever reason, were highly indicative of the generally positive reactions

to the project.

Speed, concentration, and efficiency generally seemed to improve. For example,

many students apparently stopped counting on their fingers and were able to do

more problems "in their heads." They also were able to learn problems with

which they had had difficulty by using CAI. Many demanded to know how to

correct their errors, which in itself was unusual. Further, these students

demonstrated amazing "stick-to-it-iveness."

Children were observed who continued working problems even though making

all incorrect responses. These were often children who would have given up on

similar problems in the classroom or on other programmed instructional programs.

Students also demonstrated some self-discovery asa result of meeting

difficulties on a given lesson. One boy did not learn the concept of a particular

day's lesson in class; he got the first 14 problems on the CAI lesson wrong but

the last 2 problems right and came away from the machine able to demonstrate

his understanding of the new concept.

13

I
I

I
I

M
t=

1111111111

III
I

I
.

I

4

r
;

A
I

M
M

A
N

S
,r4r2
ferA

:-

1111111111

I
I

6*
I

I

f/A
N

U
N

1

I

I
- :

I

I
..

.
I

I
IP

-
-

-

I

I
I

I

II
I

11 ,4
,

-
-

.
.

C
....

i
....,1

,
.s., ...:

40,, rA
rA

r jr,eit.j..0 .,,,
c FA

17.0' ~.1h
1..

-
-,fir

,
.

..
.... 1r

.
.

.,*'W
 , .,:.

1,
.

.
'Si':

Z
;':,-

...

111111 Ill!
le.s-, 8 1

4.4_
--- 4,t

r- .
.64- t.....--'-

4.
.... -$

.

'-'%
%

`"-:

I

t

r 4/4.-
v.

-
.t

.
.

FA
.

. .

r 40;v4A
'l; if

*

Students tended to personalize the teletypes. It was not unusual to see

them apologize to a machine for hitting a wrong key. On the other hand, of

course, they could be rude to it without fear of punishment. This freedom, of

expression occasionally had its faults. One boy became so angry that he punched

and damaged a machine beyond repair at Kendall School.

Within two days all pupils grasped how to operate the teletypes. The simple

language used in the lessons presented no problems. Limited trials with

kindergarten children showed they can learn to use the equipment for drill as

well, although they appeared to need more supervision.

Many pupils seemed to develop a more mature attitude toward learning. Pupils

who at first became angry and quit when they were wrong began to persist

through the problem. After looking over their pretest with a teacher or

supervisor, many students went home and, of their own volition, practiced for

the next day.

Other important indications of favorable student reaction include the

generally more positive response a student demonstrated when the computer typed

"NO, TRY AGAIN," than when a teacher told him he was wrong. Another was the

immediate response of the computer to student errors which is not possible for

a teacher in a group drill-and-practice session in a classroom,

After the first five months' operation, the staff reported that "All of

these reactions, positive and negative, can be traced to the extremely high

motivation of the students. The novelty did not wear off. They were extremely

enthusiastic and usually proud of themselves."

B. Drill-and-practice Reading Pro ram

1. Curriculum, Additionsoand Adjustments

The reading staff took advantage of the time following the summer school

run and the end of this reporting period to make adjustments in the curriculum.

Originally the curriculum adhered strictly to vocabulary in the basal texts

used in the Ravenswood District's primary reading program, and as such, was

programmed as three separate series. However, based on observation, quality

adjustments in the audio and systems, and student reaction, the staff chose to

delete certain sections in particular strands to avoid repetition of words

within strands. Using existing utility programs, word lists were assembled

15

from major basic reading texts as well as from three recognized sight-word lists.

These vocabulary lists were compared and screened for common occurrence and order

of introduction. This new listing provided the basis for the vocabulary strand

and resulting phonics and spelling patterns in thci reading program. In its revised

form, the Stanford reading program consists of a curriculum that can now

complement any classroom reading series.

The inputting and preprocessing of the revised curriculum in the sight-word,

phonics, and spelling strands, and the two comprehension strands, detailed in

this roport, were completed.

The strands of the reading curriculum then, as proposed in earlier reports;

were completed and ready for operational use in the 1969-70 school year. An

additional strand, language arts, is outlined as a sixth strand for the program,

and is planned to correlate closely with classroom activities.

2. Systems

During this quarter, all software for the reading program was rewritten for

greater efficiency and compatibility with the DEC Series 4 monitor, the

executive program that provides for time-sharing and re-entry among user programs.

The preprocessing, audio recording, and software needed for the two new

comprehension strands were completed. The reading programming staff also began

writing the new student record keeping and reporting routines to be used in

common by all IMSSS curriculums. Fcrmats of the reading class and individual

student reports have not been changed, but the appropriate programs are to be

compatible with the re-entrant capability of the Series 4 monitor.

3. Word Meaning Strand

The newly prepared material was added to the curriculum in the form of two

strands--a comprehension categories strand and a comprehension sentence strand.

These strands provide practice on the meaning of those words introduced in the

classroom and mastered by the student in the sight-word strand. It is a means,

therefore, to maintain that vocabulary.

In the comprehension category strand, one of several categories is

associated with each of the words in the section. A presentation consists of the

display of three words followed by a request to type the word that is in a given

category as in the following example:

Display

HOUSE CAT GREEN

Audio

Type the word that stands for
an animal.

The order of the three words in the display is random and the target word,

with its associated category, is chosen at random from the displayed words. If

the program selects "green" as the target word for presentation, the audio

requests, "Type the word that stands for a color." "House" generates a request

to identify the word "that is a place."

In the comprehension sentence strand, a section consists of three sentences

each with one word missing. Associated with each sentence is a word that fits

into the empty "slot" correctly and two distractors. One of the distractors

is of the correct form class, but is either semantically unacceptable or

syntactically unacceptable in that it breaks a subcategorization rule in the

sense of Chomsky2 and the second distractor is unacceptable both semantically

and syntactically. The format for this strand is the following:

Display

MAD DRIVE SWIM

TIM WILL --- THE CAR

Audio

Type the word that goes in
the sentence.

This exercise provides use of meaning clues or inference from sentence

context and permits greater variety within the learning task.

11.. Support Program

To facilitate preprocessing of the reading curriculum, numerous details and

programs were incorporated into a procedure that yielded (from the original

curriculum file) a group of audio directories, a curriculum dictionary, and the

necessary components for the preprocessing itself. Briefly, this procedure can

be outlined as follows:

1. Modify (if needed) and proofread the curriculum file, taping a

backup version.

2. Convert the current audio directory into a machine-readable

(binary) format. ("Textmaker" program)

3. Create a list of curriculum items with audio numbers using the

output of 1 and 2 as input. ("Getter" program)

2Chomsky, N. Aspects of the theory of syntaN. Cambridge, Mass.:

M.I.T. Press, 1965.

17

4. Assign numbers to items with no audio, record those items and

update both the output of 3 and the master audio directory.

5. Sort the curriculum-ordered audio directory (the output of 3) into

alphabetical order, removing duplicate items (used in various parts

of the curriculum) from the output. ("Alf sort" program)

6. Sort the output of 5 into numerical order. ("Numsort" program)

7. Create the curriculum dictionary:

R. List all items without audio numbers by strands. ("Getter"

program)

b. Convert each strand list into machine-readable format.

("Text-maker" program)

c. Mark the alphabetical curriculum audio direction with

identifiers indicating in which strand(s) each item occurs,

using the output (successively) of b. ("Marker" program)

d. (optional) Prepare standard word lists for initial reading

(e.g., Gates, Chall) in the same manner as curriculum strands

and mark dictionary items with identifiers.

8. Review the curriculum dictionary to determine whether any words are

overused.

9. Make final modifications in original curriculum input file,

repeating steps 2 through 8 if a great many corrections are to be

made (otherwise, simply update the affected files).

10. Make final listings and backup tapings of the following:

original curriculum input

curriculum dictionary

master audio directory -- alphabetical

master audio directory -- numerical

curriculum-ordered audio directory

curriculum audio directory -- numerical.

In connection with 7d above, a number of standard word lists were :input

and compared for the program. Besides the Lippincott, Ginn and BEL series,

Allyn-Bacon, Scott, Foresman, Heath, and Singer series were entered. These

lists are now available for comparison with curriculum items:

18

Dale List of 76 Words

Dale-Chall List of 3000 Familiar Words

Dolch List

Gates List of 187 Words.

All programs and files described above operate on the PDP -l. For final

preprocessing, however, it became necessary to use the PDP-10. A major effort,

therefore, was needed to adapt the PDP-1 preprocessor to the larger machine.

This program takes as input the original curriculum file and master audio

directory (transferred to the PDP-10) and outputs a PDP-10 file for each strand,

ready for use by the reading driver.

5. Audio

Remova3 of one 2314 disk reduced to half the available storage space for

audio. At the sampling rate of 72k bits per second, the number of messages fell

below 2,000. By performing the support procedure previously mentioned, the

user may decide which "sounds" to retain and reassign numbers and file sounds

under new numbers.

Technology has since improved so that the bit rate has been cut in half,

to 36k, increasing the capacity to over 3,000 messages. At the same time,

efforts to improve the quality have proven successful.

C. Logic and Algebra Program

Extensive recoding of the curriculum was undertaken. The sentential

connectives were replaced by their English counterpars. Thus, for example,

was replaced throughout by "and.1. Coding changes required so that the program

could be run on the PDP-10 were also made.

A proposal to systematize error messages was considered with efforts

directed primarily towards analyzing the student input in greater detail. Once

such an analysis is carried out it will be possible both to gain insight into

which concepts are difficult for the student and to send more pertinent error

messages.

A quite thorough analysis is possible since the various syntactical

operations of concern to the student are recursive. In particular, membership

in the set of axioms, whether or not an expression is a term or formula of the

symbolic language, and membership in the inference schemata are effectively

calculable.

19

In the process of constructing a derivation or proof, a student's input,

indicating his desire to either embark on a particular derivation procedure, take

an instance of an axiom or previously proved theorem, or apply a rule of

inference, is a three tuple <IalPly>, where a and y are possibly the empty sentence

and p is some code name for a derivation procedure, axiom, rule of inference, or

variable for which a substitution is to be made. If the student were to type

3CA2, for example, he would be indicating his desire to transform line 3 of the

derivation by means of the commute addition axiom: the terms around the second

occurrence of +, counting from the left, are to be commuted in line 3.

Given such an instruction the computer responds by evaluating line 3 of the

student's derivation. If there are at least two occurrences of + in line 3,

the result of the operation is typed out. If the condition mentioned is not

satisfied, "'+' does not occur twice." is typed out. A detailed description of

how the student's inputs are to be analyzed and responded to has been written.

Theories with standard formalization, i.e., theories which can be formalized

within the first-order predicate calculus, have, in recent years, been the subject

of a thorough study. The mathematical and philosophical literature is filled

with reports of studies of this most interesting set of theories. It is natural,

then, to wish to extend the logic program to include a study of the first-order

predicate calculus with identity and definite descriptions.

Our efforts to build on the firm basis of sentential logic, already developed

and in operation, are described briefly. The symbolic language must, of course,

be supplemented by the addition of notation for n-place predicate and operation

symbols as well as notation for the quantifiers and definite descriptions. The

formation rules, which determine what is to be counted as a well-formed formula

or sentence, are to be extended in an appropriate fashion and additional rules

of inference for the quantifiers are to be added.

Semantical notions such as logical consequence and logical truth do not

provide any particular difficulty given the elegant mathematical treatment by

Tarski and his students. The formal treatment of these notions, however,

demands that we exploit all means available within a CAI framework.

Since predicate calculus has a valuable application in providing a logical

analysis of arguments both in informal and technical discourse, it is expected

that students acquire techniques for determining the validity of these arguments

under their translation into the symbolic language.

20

Prior to the formal analysis of arguments, students will be afforded the

opportunity to symbolize English arguments. For example,

Symbolize the sentence: If all men are wise

and Socrates is a man, then Socrates is wise.

(1) M(x)

(2) W(x)

(3) M(s)

(4) W(s)

-4 1.2 (5) (M(x))W(x))

x5 (6) /8x (M(x) W(x))

A6.3 (7) x (M(x) W(x)) m(s))
7.4 (8) ((,,, x (M(x) W(x)) M(s)) w(s))

The idea behind this sort of exercise is quite simple. The appropriate atomic

formulas of symbolic language are provided. The student gives instructions to

the computer in Polish notation, i.e., parenthesis-free notation, and the

computer types out the result obtained in the notation essentially of Principia

Mathematica.

Since, by a thorem of the American logician, Alonzo Church, first-order

theories are undecidable, aproblem arises. There is no automatic method for

determining when a symbolization of the student's is equivalent to the /fright

symbolization.' But for our purposes it is sufficient that the student construct

symbolizations according to certain rules of thumb which ensure that different

students arrive at a uniform result.

In order to construct derivations and proofs within this symbolic language,

we need three inference rules and a new derivation procedure over and above those

required for sentential logic. The new derivation procedure is one which permits

the student to establish a formula beginning with a universal quantifier as a

line of a derivation or proof.

An example of such a derivation is the following:

Derive: (.,4%x)(F(x) & G(x))G(x))

Gen:x OK

WP (1) F(x) & G(x)

1RC (2) G(x)

1.2CP (3) (F(x) & G(x) --G(x))

Genic (4) (Ax)(F(x) & G(x) G(x))

By typing 'Gen:x' the student indicates that he wants to establish as a line a

formula of the form (t'x)cp. This derivation procedure is intended to capture the

proof technique of informal mathematical practice where one demonstrates that

21

every object has a certain property by showing that an arbitrary object from the

universe of discourse has the property. Consequently, as in the case under

consideration, the computer must ensure that the object indicated is an arbitrary

one in the appropriate sense by scanning the previous lines of the derivation or

proof to make sure that the object indicated is not explicitly mentioned. Thus,

if x does not occur free in any antecedent line, the derivation is permitted- -

in this case, the computer types 'OK.' After the student has constructed the

desired formula except for the initial quantifier and its variable, he types

Gen:c which tells the computer to type a universal quantifier, the variable occurring

in the last instruction of the form 'Gen: ', and the formula immediately preceding;

i.e., the computer is told to type out a formula of the form (Ax)p.

The three new inference rules are universal specification (US), existential

specification (ES), and existential generalization (EG). The use of these rules

is not problem-free. In order not to warrant fallacious inferences, authors

of standard texts on mathematical logic usually give a definition in a

syntactical metalanguage of the notion of proper substitution. In terms of

this notion it is possible to formulate certain restrictions on the rules of

inference which enable one to avoid generating fallacies.

Within the context of CAI it is not necessary to formulate these

complicated definitions. In analogy to the procedure for determining whether a

variable of generalization satisfies certain conditions, the student may "ask"

whether a certain application of one of the rules is permitted.

In the case of all of these rules of inference one need be careful not to

identify variables. The many ways in which this can happen need not be

discussed here as that would take us too far into technical details.

As a final example consider the following:

P
P
221:1
WP
1USy

4.3AA
2USy

6.5AA

3.7CP
Gen:c

Derive: (y)(F(Y) -411(y))
(1) (-x) (F(x) --)G(x))

(2) (.z) (G(z) --) H(z))

OK

(3) F(y)

OK

(4) F(y) -->G(y)

(5) G(y)

OK

(6) G(y) -->H(y)
(7) H(y)

(8) (F(Y) H(Y))

(9) (4 Y) (F(Y) H(Y))

22

As with the case where a student's input has the form 'Gen:13' where p is a

variable, ,"_ES and ' EI are essentially questions which the computer

responds to by typing either OK in case the operation is permitted, or an error

message telling the student why the operation cannot be performed. If 'OK' is

sent, after the student hits the space bar, the desired result is typed out.

Programming. The major part of our effort was spent on debugging the program.

Most of the coding had already been completed, so that when the first version of

the time-sharing system became reasonably reliable, we began debugging the

input/output functions in the program. This was a necessary first step, because

when those functions are working well, the rest of the debugging is simplified.

The goal was to get to the point where we could present a simple problem to a

student, process his input to the program, and then type information back to

him. This meant debugging (a) the interface with the system, (b) the routines

that handle curriculum files, search for the right problem, read it in and

present it to the student, (c) the routines that collect the student input,

convert it to internal notation, and decode it so that the proper rule processor

can be called, and (d) all the routines that collect the processed information,

convert it from interal notation, and then send it out to the student.

We had continued debugging on the earlier version of the time-sharing

system until almost the end of the quarter, waiting until the new and final

version had been up and running reliably for a while before trying to run under

it. We spent the rest of the quarter re-programming the interface with the system,

so that we could begin running under the new version.

D. Second-year Russian Program

The period from July 1, 1969 through September 30, 1969 was spent preparing

for the coming academic year and included revisions, changes, and additions to

the material.

The interest of Stanford students in computer-based Russian was evidenced at

the end of the academic year of 1968-69 by the pre-registration of 69 students;

53 students for the first-year course, and 16 students for the second-year course.

Since at the time of pre-registration, we had not announced that in the

coming year only the computer-based second-year course would be offered, it is

significant to note that of the 30 students who completed the computer-based

first-year Russian in the academic year 1968-69, 16 students pre-registered for

computer-based second-year Russian. The 14 students who did not re-register

were those who either were no longer at Stanford cr who had completed language

requirements.

During the two days of registration on September 29 and 30, 1969, for the

coming academic year, 75 students registered for computer-based first-year

Russian as opposed to 13 students registered for the conventionally taught

first-year Russian.

E. Computer-assisted Instruction in Programming: AID

1. The Instructional System and Its Implementation

The instructional system which will be developed consists of three major

components: a coding language, a set of computer programs to interpret the

coding language, and a set of auxiliary operational programs. The coding language

will be a high-level programming language used by curriculum writers for

writing programmed lessons in machine-readable form. The coding language,

which is independent of any particular implementation on any specific computer,

must be defined precisely enough so that it can be implemented on any computer

with the necessary components (e.g., teletype or typewriter consoles, random-

access memory of sufficient size). Since the coding language may be used by

relatively inexperienced personnel, it must be easy to learn and easy to use.

The implementation of the instructional system will require a set of

programs that interpret lessons written in the coding language and follow those

instructions in presenting lessons to students. The set of interpreter programs

must not only interpret coded lessons correctly, but must also satisfy other

prerequisites of a good system for computer-assisted instruction. One of the

most essential prerequisites is satisfactory response time; the computer must

be able to respond to the student in a matter of seconds. The implementation

must provide also for sufficient storage space for large numbers of coded

lessons. Since massive amounts of curriculum will be prepared, the storage of

coded lessons must be economical, in terms of amount of disk space used, and at

the same time, must provide rapid access to such material to satisfy the

requirement of fast response time. The amount of computing time and amount of

core memory meded also must be held to a minimum to provide an economic

implementation.

2/1-

In addition to the programs needed to interpret the coded lessons, there must

also be available a set of programs for various operational purposes. For example,

a simple method of enrolling students is needed. Also, it is desirable to have

-eports on the progress of specified students or groups of students, reports on

the amount of use of the system, etc. These auxiliary programs, while not

inherently necessary, help provide a smoothly running large-scale operation.

2. Design of Revised System

A revision of all parts of the instructional system was planned in detail.

The revision was based on six months' experience with the preliminary version;

suggestions were contributed by students, coders, writers, and machine operators.

Revision of curriculum. During the preliminary test of the lessons,

sufficient information was gathered to warrant revising the first fifteen lessons.

A few changes were made in the outline and numerous small changes are being made

in problems. The course as now planned will use three strands: one for lessons,

one for summaries of lessons, and one for reviews, with the possibility of adding

several smaller strands, such as additional lessons in algebra and trigonometry,

at a later time.

The work of revising and recoiling the first twenty-five lessons is about

half done. Lessons 26 to 38 are written and coded. Lessons 39 to 50 have not

yet been written and no debugging has been done. About two months of full-time

work is needed to complete the revision of the curriculum.

A revision of the student manual is also underway and will be completed

within a few weeks.

Design of the system. The instructional system has been designed to allow

considerable flexibility in curriculum design. A course may be partitioned into

a number of "strands," each of which may contain many lessons. Thus, a course

in history could be written with one strand for the history of Asia, one for the

history of Europe, etc. In any strand, the lessons are numbered 1, 2, 3, etc.,

so that each strand may constitute a separate sub-course with no necessary

relation between the content of various strands. On the other hand, a curriculum

designer may wish to use one strand for the basic required lessons, another for

enrichment material, and still a third strand for remedial lessons. In such a

case, there might be a close relationship between the content of similarly

numbered lessons on different strands, e.g., the third lesson on the remedial

strand could be for students who had difficulty with the third lesson on the main

strand.
25

The current position on each strand for each student is continuously updated

by the system and is saved from day to day so that the student may start each day

from the last problem he was working on.

Within each strand, there is a sequence of lessons containing any number of

problems. The basic branching structure of the system provides for linear

branching from one problem to the next after a correct respona?,is given and an

automatic branch to the beginning of the next lesson after a lesson is completed.

(An incorrect response to a prcblem simply causes a loop within the same problem.)

There is no implicit branching between strands.

Although the only branching which is done automatically by the system is a

simple skip to the next problem in the sequence, extremely complex branching

structures may be used in a given course by using the branching commands provided

in the coding language. These branching commands are conditional upon either

correct or incorrect responses from the student and can cause a branch to any

problem in any lesson in any strand. In addition, the branching commands can

be used as "subroutine returns" to return a student to his current position

on another strand; i.e., if no lesson and problem numbers are specified in the

branch command, the student's current position in the specified strand will be

taken as the specification.

The flexibility of the branching structure may be enhanced in yet another

way. If desired by the curriculum designer, the student may use "control keys"

to alter his own sequence of instruction. The curriculum designer can specify

any key on the teletype as a "go" key; when the student types that key, the

program requests the number of the lesson and problem he wants to do next.

There may also be a "next" key, which causes a skip to the next problem in sequence,

without requiring the student to specify lesson and problem numbers. The "next"

key, like all other control keys, must be specified by the curriculum designer

before it can be used by students.

Several other student control keys are available. Use of the "hint" key

displays additional explanatory text, if such text was provided by the

curriculum writer. Any number of hints may be provided for each problem and

are given to the student in the order coded in the problem. The "tell" key

requires the computer to give the correct answer to the current problem, again

provided that such an answer was coded by the curriculum writer. For both

the "hint" and "tell" routines, there are appropriate default messages which will

26

be typed if the curriculum writer did not supply a message, e.g., "There are no

hints for this problem," "No answer was written."

By appropriate definitions of the student control features, a curriculum

designer can build a course which allows for maximum student control, or he

can design a course in which the branching structure is tightly controlled by

the program.

In order to provide highly individualized programmed lessons, 'there must

be non-trivial routines for analyzing student responses and performing appropriate

actions contingent upon the results of such analysis. Analysis routines must be

highly differential, so that specific errors can be isolated and appropriate

remedial material presented. A correct-incorrect classification of

responses is insufficient for an individualized, tutorial system of teaching.

There are twelve basic analysis routines: EVICT, KW, EQ, MC, TRUE, YES, and

their negations NOTEXACT, NOTKW, NOTEQ, NOTMC, FALSE and NO. The EXACT routine

checks the student response for an exact character-by-character match with a

coded text string; KW (key word) checks for the occurrence of a coded key word;

TRUE checks for a response of "TRUe or "e; the MC (multiple-choice) routine

is used for multiple-choice problems in which several choices are correct

(a correct response may be a list of all correct choices, or a list of a minimum

number of correct choices depending upon how the MC command is used by the coder);

the EQ routine checks for a number within a range of numbers, as specified in

the coding, or checks for equality with a single number, also as specified in

the coding.

The basic analysis routines not only check on the correctness of a student

response, they also check on the form of the student response. For example,

the PA routine accepts as a response any number in integer form, decimal form,

or scientific notation; any response which is not in an acceptable form (e.g.,

a response of the word "four") elicits an error-in-form message: ERROR IN FORM:

PLEASE TYPE A NUMBER. Another routine which differentiates between correctly

formed and incorrectly formed responses as well as between correct and incorrect

responses is TRUE. Either TRUE or T is a correct answer, and either FALSE or F

is an incorrect answer. Any other response from the student elicit's an error-

in-form message: PLEASE ANSWER TRUE OR FALSE. Most other analysis routines

(YES, MC, etc.) also contain error-in-form subroutines.

27

Complex analyses of student responses may be made by using simple Boolean

combinations of the basic analysis commands. For example, the coder can specify

a check for a number that is between 1 and 10 but is not equal to either 5 or

5.5, by using appropriate combinations of EQ and NOTEQ commands.

Since most of the action performed by the analysis routines is internal,

i.e., with no action visible to the student, there are also commands that cause

coded messages to be relayed to the student, appropriate branching to take place,

etc. These commands, called "action commands," are all contingent upon the

results of the analyses performed by the analysis commands, i.e., the actions

are contingent upon the correctness of the student response.

A detailed description of the design of the system has been written as a

part of the Coders' Manual for the PDP-10 implementation.

Revision of computer programs. The revised instructional system will be

implemented on the PDP-10, a larger, faster machine than the PDP-1. The major

programs, the lesson processor and the lesson interpreter, are now completely

written and debugged for use by single users (i.e., the only time sharing which

is done is handled by the time-sharing monitor, not by the program itself, so

that multiple users of the program require multiple copies). The conversion to

a time-sharing system will be accomplished within a few weeks.

No changes have been made in the basic ideas of any part of the system;

the main thrust of the revision is more in the nature of an extension. Although

none of the basic ideas have changed, several undesirable features were detected

in the period that the preliminary system has been in use. Most of these were

unanticipated (the reason for preliminary testing is, of course, to uncover

unanticipated errors in the design). For example, the lesson interpreter

continuously updated its record of the student's postion in the course, but

did not save the record from day to day without a specific request from the

machine operator. This proved to be a minor source of annoyance during the

period when several different operators (some quite inexperienced) were using the

system. Another inconvenience for machine operators that occurred as they

loaded the system was the requirement to specify the desired lesson file by

number and name. A simpler operational procedure was to specify a course

numer and to let the program determine the number and name of the appropriate

lesson file. Both of the above features have been changed in the revision.

28

In the preliminary version of the lesson processor, there was a limit on the

amount of lesson code which could be processed at one time--the limit was imposed

by the amount of available core storage. This limit was large enough so that most

lessons could be processed in their entirety but the coders had to be continually

aware of the limit and had to break long lessons into several segments for processing.

In the new version, no limit is made on the amount of code which can be processed

at one time.

In coding a lesson, the coder was required to list, at the beginning of each

lesson, the numbers of all the problems in the lesson. These numbers had to be

sequdntial and had to correspond exactly to numbers attached to the problems in

the lesson. Not only was this a time-consuming procedure, it also led to

unnecessary coding errors. In the revised system, problems are numbered

automatically, simplifying the coder's task as well as decreasing the error rate.

All changes discussed so far are minor, but of increasing importance when

large amounts of curriculum material are produced and large numbers of students

accommodated. A smoothly running system should allow as little room for

operator and coder errors as is feasible,.

As mentioned before, the main direction of the revision was to extend, the

ideas already incorporated in the system. The three major changes in the

instructional system were:

1. Revision of the lesson interpreter to allow time-shared

use of the system by large numbers of students.

2, Addition of a multiple-strand structure for the curriculum.

3. Addition of multiple-hint capabilities.

Extensive changes are planned for the coding language, the curriculum,

the interpreter program, and the processor program.

The coding language is being extended to include about twice as many basic

commands as were available in the preliminary version, the format has been

simplified, and macro capabilities were added.

A detailed description of the coding language and how to use it has been

written as part of the Coders' Manual. The Coders' Manual also gives a complete

description of all programs and how to operate them, including instructions for

using other necessary systems programs such as the text editor, the assembler,

and the loader.

29

The lesson processor. The new lesson processor is similar to the old one;

it is also a two-stage processor, the first stage being one of the PDP-10

assemblers. Since the PDP-10 has a macro-assembler, full advantage has been taken

of the macro capabilities. The processor consists almost entirely of macro

definitions of the op codes used in the coding language, plus a very short load

routine which stores the processed lessons on a disk file (the processor io

essentially a zero-length program). The coder is also allowed the advantages

of a macro assembler; judicious use of macros can reduce coding time significantly.

In the preliminary version of the system, the translation of text to teletype

code (which must be done before messages can be typed on a teletype) was done

by the lesson interpreter. This is a somewhat inefficient arrangement since

the translation must be done for each student using a problem, and, while not a

time-consuming operation, it does contribute to an increase in response time.

In the revision, the translation to teletype code is performed by the lesson

processor so that it is done only once per problem rather than once for each

use of the problem.

The lesson interpreter. The new interpreter is written as a re-entrant

time-sharing program using about 5k words (36 bit) of core plus lk for each of

the students concurrently taking lessons. The program is written in one of the

assembler languages for the PDP-10.

As with the preliminary version, great care has been taken to ensure fast

response time and economical use of core and disk storage. Routines for

detecting and compensating for coding errors have been incorporated. In a

similar fashion, unexpected responses from students are not allowed to cause

errors in the program.

Two changes in the lesson interpreter serve to make the instructional

system much more versatile than the preliminary version. One of these changes

is the provision of variable student control keys. That is, the actual keys

used by the student as a "hint" key, a "tell" key, etc., are specified by the

curriculum designer, and may, in fact, be left undefined if students are not to

be allowed the use of some control keys.

Another change, which is in the same spirit as the variable control keys)

is the provision for variable standard messages. Standard messages such as NO HINT

WAS WRITTEN, and ERROR IN FORM: PLEASE TYPE A NUMBER were previously fixed by

the lesson interpreter. In the new version, such standard messages are defined

30

by a coder when a new course is started and may be changed as many times as

desired without affecting the messages used in a different course.

The device of allowing variable control keys and standard messages allows

the program to be used simultaneously by students in many different courses,

without requiring the designers of the course to agree in detail on control keys

and standard messages.

Both the lesson processor and the lesson interpreter are described in some

detail in the Coders' Manual and are also documented separately.

Documentation. The main document for the instructional system is the Coders'

Manual which contains a complete description of the instructional system, an

introduction to the coding language, reference sections on the coding language,

a description of all programs, and instructions for operating them. The manual,

which contains about 100 pages, is written for use by curriculum designers,

writers, and coders who are unfamiliar with computers and programming. The manual

is written so as to separate those sections that pertain to a particular

implementation; thus, the first part of the manual, which includes a description

of the system and the instructions on coding, could be used for other implementations.

The manual is now complete except for a section on operating the enrollment

program and an index.

In addition to the documentaion in the Coders' Manual, all programs are

also documented internally. The Coders' Manual, together with a set of program

listings, would constitute sufficient specification for another implementation.

F. Computer-assisted Instruction in
Programming: SIMPER and LOGO

1. Background of the Project

In February, 1969, a course in elementary computer programming was

introduced at Woodrow Wilson High School in San Francisco. Six classes of

15 students each received instruction via teletypewriters linked to the PDP-1

computer at the Institute. Two adult education classes and an afternoon

"enrichment" laboratory for upper elementary and junior high school students

also used the equipment and instructional materials.

Two programming languages were taught, both especially designed for

instructional purposes. One was SIMPER, a pseudo-assembly language designed

by Paul Lorton of Stanford University. The other was LOGO, a list-processing

31

language designed by and used with the permission of Bolt, Beranek, and Newman,

Inc. of Maynard, Massachusetts. There were 38 SIMPER lessons and 19 LOGO lessons.

2. Curriculum Revisions

In July, it was believed that both SIMPER and LOGO would be taught on the

PDP-10 computer in September, 1969. Also, an advanced course to teach AID (a

course described in Part E of this report) would be offered on the PDP-10. The

lesson-control program for these courses is also described in detail in Part E.

The first 20 SIMPER lessons were revised using teachers' and students' comments

in a form suitable for use with the new system, as were the first 20 LOGO lessons.

As work on the PDP-10 programs continued on the general systems work,

the lesson-control program, and implementation of the three programming

languages, it became clear that a deadline of September 4 was not realistic.

These considerations led to a revised plan: to continue to use the PDP-1 computer

for the fall semester for SIMPER and LOGO. Since LOGO would be extended from

19 to 49 lessons and extensively revised, second-year students would begin with

a review of LOGO, then continue with new LOGO lessons, going on to work in the

advanced course on AID about the end of December. These advanced students would

then continue the AID course in the second semester.

To implement this plan, the LOGO lessons were recoded for the PDP -l.

By September 30, the first 30 LOGO lessons had been revised and coded, and the

next 19 lessons planned. The outline of these lessons appears in Table 8.

Homework assignments and tests for these lessons were also written and coded.

A student manual was prepared that included discussions of computers,

programming languages, and computer-assisted instruction, as well as detailed

descriptions of the teaching program and LOGO, and a glossary of terms used in

the LOGO course. A teachers' manual was also prepared which included the

student manual, homework assignments, answers to homework and tests, and

suggestions for effective implementation of the course.

3. The Classroom

On September 4.,the LOGO course was begun in eight classes. A few weeks

later the two adult classes resumed work, as did the enrichment laboratory. As

during last year, students and school personnel have been enthusiastic and

extremely helpful in all work associated with the project. Several students came

to school early, usedlunch periods, and/or remained afterschool to gain more time

to work on the course.
32

Lesson

TABLE 8

Outline of LOGO Lessons, Lessons 1 to 49

Description

1

'2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Introduction to the Teaching Program.

Introduction to LOGO; the instruction PRINT.

The instructions WORD and SENTENCE.

The instructions FIRST and BUTFIRST.

Review: Lessons 2 to 4.

Review: Lesson 1.

The instructions LAST and BUTLAST.

Introducing compound commands.

More about compound commands.

Signing on to LOGO.

Review: Lessons 7 to 10.

Review: Lessons 2 to 10.

Arithmetic instructions.

Negative numbers.

The instruction CALL.

Using CALL with other commands.

Review: Lessons 13 and 14.

Review: Lessons 15 and 16.

The instruction SAME.

The instructions WORD?, NUMBER ?, and SENTENCE?.

The instruction GTR? .

Introducing functions.

Review: LOGO tests.

Review: Functions.

Practice writing functions.

Functions with more than one argument.

Editing functions.

The instruction GO TO.

Equivalent functions.

Review: Lessons 25 to 29.

33

TABLE 8 (continued)

Lesson Description

31 Review: Lessons 1 to 29.

32 An astrological function.

33 Introducing recursive functions.

34 Writing recursive functions.

35 String searches using recursive functions.

36 Review: Recursion.

37 Review: Lessons 1 to 35.

38 Writing functions to do "Piglatin."

39 More recursive functions.

40 Advanced recursive functions.

41 Writing functions about sets.

42 Review: Recursion.

43 Review: Lessons 1 to 41.

44 Writing functions involving decimals.

45 The instruction BOTH.

46 The instruction EITHER.

47 Loops.

48 Counters.

49 Review of the course.

G. Basic Research in CAI

This is the first progress report covering work begun under the grant for

basic research in CAI. The report therefore mainly deals with work that has

just begun or is still in the planning stage. A description of the work is given

under the main categories of activities planned through the coming year.

Dialogue programs. Three students, Adele Goldberg; James Moloney, and

Roulette Smith, are writing dissertations on dialogue programs under the direction

of Professor Patrick Suppes. Miss Goldberg, who is a doctoral student at the

University of Chicago, is working on a program that will be able to help students

proving theorems in algebra, by attempting to look ahead at the steps needed to

complete the proofs begun by the student. The central problem is to embody in a

program a proof procedure close to the kinds of proofs students will ordinarily

give. Mr. Moloney is working on E, related problem. In his case, he is dealing

with proofs in algebra restricted to identities. He is attempting to impose a

metric on the distance between each line of proof given by the student and the

desired goal, so that the program can, by constructing a proof itself, extend

the work of the student. The program looks for a step that diminishes the distance

between the work done thus far by the student and the intended final result. Mr.

Smith is writing a program that is meant to simulate the behavior of teachers in

teaching elementary sentential logic. In his case, he will build up a store of

proofs given by students and use these rather than a generative procedure. He

is also planning to introduce a dialogue of comments that are meant to be

tailored after the kind of comments ordinarily given by teachers.

Speech recognition. During this first period of activity, the main work has

been establishing close communication with Professor D. Rajagopal Reddy's group,

which has been moving from Stanford to Carnegie-Mellon. Close cooperation with

Professor Reddy and his group working on basic problems of speech recognition is

planned for the future. We are just beginning the first experiments of attempting

to recognize a vocabulary of twelve words, the ten digits, as, and no, spoken

by young children over telephone lines. The first step is to use Reddy's present

program, now running on the PDP-10 of the Artificial Intelligence Project at

Stanford. On the basis of these initial experiments, we will then decide what

kind of software and hardware system to put on our own PDP-10 system for more

extensive experimentation.

35

Mathematical models of learning and performance. The main effort in this

direction during the period covered by this report has been directed toward

developing more detailed automaton models of student performance in elementary

mathematics. In the original theoretical work in this direction, we restricted

ourselves to automata that dealt just with answers being correct or incorrect,

i.e., if an error was made it was simply an error according to an error

distribution and not according to some wrong conceptual scheme. In many cases,

students make errors of a systematic sort, as everyone who has taught any level

of mathematics is well aware, and what we are currently trying to do is to embody

a more elaborate scheme in our automaton models to take account of these

phenomena. We are in the process of deciding what data to collect in order to

test the theoretical ideas. During the course of the year we hope to be able

to complete some fairly substantial empirical -tests of the theoretical models we

have been developing in this area. More detailed reports of these tests will be

given in later progress reports.

Computer-generated speech. Work on a digitized audio system began in 1968

after we decided that any straightforward analog system would be unworkable.

Previously, we had worked on the CROW system which had a vocabulary recorded on a

wide magnetic tape. That system was sold to the University of Pittsburgh.

By June, 1969, we had a working digital system that required 72,000 bits

for each second of audio, was noisy, and had a very limited frequency response.

The system was only able to pass frequencies below 430 hz at full amplitude.

The maximum amplitude for frequencies fell off at 6 db/octave above that frequency.

(Note: All db figures in this report are power figures, i.e., db = 20*log

(V02.)

We have changed the bit rate to 36,000 hz, eliminated all but the

quantization noise, and increased the critical frequency from 430 hz to 850 hz.

We have further reworked the speech editor "SPEDIT" to accommodate these

changes and have added various simple features to the program. The new editor

is called "SPEECH" and lives on the PDP-10. Two other versions exist: "FOPS"

edits and plays, but does not record; "SHORT" plays only.

These programs are for the series 3.18 monitor and are being converted to

the series 4 monitor.

36

Description of the single-bit audio follower system. The single-bit audio

follower system works by only recording, in digital form, the changes in amplitude

of the analog audio waveform. The dynamic cardiod microphone in booth F

transduces a person's speech into an analog voltage. This voltage is amplified

by the Bogen model ETID-1 pre-amplifier. The line level output (600 ohms, 1

milliwatt) of this pre-amp is filtered by two Krohn-Hite filters. One filters out

all frequencies below 300 hz and the other filters out all frequencies above

300 hz. This filtered input wave is buffered by a unity gain amplifier in the rack.

Its output voltage is compared with that of an integrator. If the input

amplitude is larger than the output of the integrator at the sampling time,

then a ground is applied to the integrator for the duration of the sampling period.

If the input amplitude is smaller than the output of the integrator, a

positive voltage is applied to the integrator. This circuit is called the

feedback DAC (digital-to-analog converter). The feedback DAC is a series 10k

resistor and a parallel .47 mfarad capacitor followed by an amplifier with a

voltage gain of -22. Thus, a positive voltage applied to the input will cause

the output of the amplifier to ramp downwards. A ground applied to the input will

cause the output to ramp upwards. A 36,000 cycle/sec. sampling clock is used.

A bias voltage is needed to balance out all the offset voltages of the amplifier

chips used.

There are two important parameters in the design of this audio system. The

first is the slope of the ramp produced by the feedback DAC. The second is the

sampling frequency or bit rate. One picks the rc time constant of the integrator to

be longer than the time constants of the audio's lowest frequency (i.e.,

300 hz). This allows any noise picked up in the integration process to

gradually bleed out and at the same time allows full frequency response. One then

sets the gain of amplifier to give a particular slope. This slope determines

the highest frequency that the analog-to-digital converter can follow at maximum

amplitude. This system's slope allows it to follow all frequencies below 800 hz

at full amplitude. It can follow lower amplitude high frequencies since the

maximum that can be followed falls off at 6 db per octave. The sampling rate

and the slope jointly determine the amount of noise in the system. Thus, a fast

slope increases the frequency response, but also increases the noise, and a

fast smapling rate will decrease the noise, but increase the channel bandwidth

requirements.

37

The bit stream that is input to the feedback DAC is also input to a

high-speed line unit (HSL). Normally, the HSL ignores this bit stream. However,

if the record button in booth F is pushed, the clock also goes to the HSL and

gates in the bit stream. The HSL packs the bit stream into 18-bit words and

places these words in core. The program SPEECH, if it is running, unpacks the

18-bit words and repacks them as 36-bit words. The program can then edit, play,

and file the sound on the disk. The program can also retrieve old sounds from

the disk. Once on the disk, other programs, such as the drill driver, can get

these sounds and play them.

Playing the sound is accomplished by placing the sound in core and placing

a pointer to that buffer where the audio multiplexor will see it. The audio mux

will see the pointer, increment it by one, and then access the word. This word

will be placed in a 36-bit shift register. From the shift register, one bit at

a time will be shifted to an output DAC. At present, there are 72 (octal)

channels each with a shift register and DAC. The output DAC is much like the

feedback DAC except its amplifier has a gain of -44 and it has an rc filter on

the output (f = 3000 hz).

Acquisition of reading skills. An experimental program in this area is

just beginning under Professor Richard C. Atkinson and will be reported in more

detail in the next Quarterly Report. During the period covered by this report,

the main emphasis has been on getting the current PDP-10 system operational,

including digitized audio, in order to create a framework within which

experiments could be conducted.

H. Stanford PDP-1/PDP-10 System

1. Hardware

After the end of summer school) the PDP-10 was modified by DEC engineers

to install the second set of relocation and protection registers in the central

processor. These were necessary to run the re-entrant programs of the new monitor

system. The work was completed in good time, and no problems have been experienced

with the new features.

During this reporting period, one of the two IBM 2314 disk units was

removed from the system because of reduced storage requirements after the

Mississippi and Kentucky student terminals were detached from the system.

38

An analog-to-digital input channel was attached to the PDP-10 through one

of the units of the high-speed data, communications multiplexor. This is used for

audio recording and permits the input of digitized sounds directly into the PDP-10

memory, instead of passing the data through the PDP -1, which had been the previous

technique.

A process of investigation and experimentation was begun to improve the

quality of the speech output by the digitized audio system. The analog-to-digital

channel mentioned above was part of this program to obtain more understanding

and control of the data at each stage from recording, processing, and storage to

the distribution and conversion back to audible speech.

Work was started to convert much of the local communications system from

single lines to time-division multiplex arrangements permitting several terminals

to share a single line. Due to delays in the delivery of some of the equipment,

it was not possible to complete the change-over during this period.

The magnetic-tape audio units used by the Russian course were the subject

of some redesign during this period to improve their audio quality and control

reliability.

There were continuing problems with minor circuit failures and intermittent

faults in the PDP-10 memory system, but the remainder of the central facilities

had good reliability.

2. Software

The major effort during this period was on the adaptation of the DEC Series 4

time-sharing monitor for use on the Stanford hardware. An important advantage

of this type monitor to the operations is that the system programs insulate

users from one another more efficiently than the drill-driver system. When

using an experimental program, for example, even a serious programming error will

affect only those users who reach that particular section of code, while others

may continue. It is also possible to correct or improve programs by making a

new version available without interfering with users who have already begun

working with the older version.

As the system is used for a wider range of courses, it is also important

that terminals may be used for as many of these as possible without intervention

from an operator to "detach" or "attach" the unit with respect to particular

programs. The new monitor will permit the student a full choice of courses for

39

which he is registered, while excluding him from others. In a similar way, it will

no longer be necessary for a driver program to be "brought up" at a particular

time for it to be available. It should be possible to get lessons or reports at

any time the system is in operation.

The unique hardware arrangement of the Stanford system required many changes

to the monitor, but the most important of these were completed during this period.

These included communication with the PDP-1 and the use of the Philco displays

as terminals. Code for the IBM 2314 disk unit was written, including a technique

for using individual packs that does not currently appear in DEC software.

Utility programs were written or modified for the new system, and memory

and other test programs were developed to assist with hardware maintenance.

II. Activities Planned for the Next Reporting Period

A. Drill-and-practice Mathematics Program

The revision of the remedial college-level mathematics will begin during

the next period. A sufficient number of students have now run on the preliminary

version of the program to indicate the nature of the revisions needed. In

particular, revisions will include more semi-programmed instructional segments

to introduce key points or to help students in identified problem areas.

Format problems continue to be of concern. It is difficult to format many

standard algebraic expressions on a Model-33 teletype. Several approaches have

been tried. One which appears to offer the most promise is to use a more

conversational instructional approach while directing the student through each

part of the expression and then to recombine the parts into an equation for

simplification in the final steps.

The first quarter's work will be revised and the second quarter will be

completed during this period.

The problem-solving program which has been at a standstill will receive more

attention. A large number of items (2,000 to 3,000) have been written. Many

need revision and classification into equivalence classes. Problem classification

itself is not a simple task. Little is known about the variables that contribute

to difficulty and confusion in arithmetic word problems. The literature is being

searched for suggestions as to which variables appear to have the most influence

at each grade level and in each conceptual area across grade levels.

4o

Programs developed at Stanford and elsewhere will be used with adults interested

in passing the G.E.D. test or obtaining a high-school diploma. Four teletype

terminals will be in operation with the Stanford Medical School staff in a program

designed to upgrade the education of staff members, particularly those who are

members of minority groups. This program is being sponsored by the Minority

Relations Department at the Stanford Medical School.

Work on the strands mathematics program will continue through the year.

The program eventually will be extended upward to include grades 7 and 8.

B. Drill-and-practice Reading Program

Routines for on-line monitoring of reading students and for altering

individual and class restart parameters will be completed for the 'Series 4'

monitor. Attention will again be directed to the development of meaningful

data recording, collection, and analysis. Plans are being made to re-record the

audio during this quarter for greater intelligibility. Every effort will be made

to solicit suggestions from classroom teachers whose students are involved in

the CAI reading program to further implement the curriculum and individualize

the reporting procedures to improve the program's effectiveness as a teaching

tool. We will also be involved in the development of the language arts strand

and in making the necessary revisions in the Teacher's Manual.

C. !laic and Algebra Program

The debugging of the logic and algebra program, which is necessary after the

extensive revision and reprogramming, is expected to be completed. This program

includes the new counterexample mode.

Having completed the recoding, including the systematic replacement of the

sentential connectives by their English counterparts, the curriculum is ready

for debugging. It is expected that this will be accomplished by the next reporting

period.

D. Computer-assisted Instruction in Programming: AID

During the next three months, the lesson interpreter program will be

revised to make it a re-entrant time-sharing program, thus completing the set of

essential programs. The Coders' Manual will be completed also. The major effort

will be in the revision and extension of the curriculum and some effort will be

put into designing desirable auxiliary programs for the instructional system.

E. Computer-assisted Instruction in Programming:
SIMPER and LOGO

Next quarter LOGO lessons 31 through 49, together with associated homework

assignments and tests, will be written and coded. Material on all LOGO lessons

will be gathered to aid in revisions. We plan to offer the LOGO course in

autumn, 1970, when it will be available on the PDP-10 computer. The language

itself is being written for the PDP-10 by its original designers, Bolt, Beranek,

and Newman, Inc. of Maynard, Massachusetts, and should be debugged sometime in

early 1970. Our revised lessons will take advantage of new commands in the PDP-10

version of LOGO and will incorporate suggestions of teachers and students for

improving current lessons.

Also, preparation of a course in BASIC will be started. The BASIC course

will be offered beginning January 27, 1970 and will run on the PDP-10 computer.

The lesson-control program and the coding language that will be used is in

preparation and is described in part E of this report.

F. Stanford PDP-1/PDP-10 System

No hardware changes are planned for the next reporting period. Work will

be completed on the multiplexed communication line system. Delivery is expected

of a DEC 6801 communications unit which will expand the capacity of the system

for local terminals and those using the multiplexed lines. It is not planned

to bring this unit into use during the period. The 1301 disk unit on the PDP-1

will be released if the necessary software can be completed for the PDP-1 to use

space on the 2314.

Software work should see the operation of the Series 4 monitor for

instructional use by students.

III. Dissemination

A. Lectures

Atkinson, R. C. Chairman, Colloquium on Memory at the XIX International Congress
of Psychology, London, July 27-August 2, 1969.

Jerman, M. Computer-assisted instruction in elementary and secondary mathematics.
Lecture presented to Shell Merit Fellows, Stanford University, Stanford,
July 11, 1969.

Jerman, M. Computer-assisted instruction. Lecture presented at The Workshop on
Innovations in Instructional Techniques, Colorado College, Colorado Springs,

July 21, 1969.

42

Jerman, M. The Stanford drill-and-practice program in elementary mathematics.
Lecture and demonstration presented at The Workshop on Innovations in
Instructional Techniques, Colorado College, Colorado Springs, July 21, 1969.

Jerman, M. The philosophy and structure of available CAI programs. Lecture

presented at The Workshop on Innovations in Instructional Techniques,

Colorado College, Colorado Springs, July 22, 1969.

Jerman, M. Computer-assisted instruction in mathematics. Lecture presented to
NSF Summer Institute participants, Stanford University, Stanford, July 30, 1969.

Jerman, M. Drill-and-practice in elementary mathematics. Lecture presented to
selected mathematics teachers, St. Paul City Schools, St. Paul, Minnesota,

September 17, 1969.

Jerman, M. Research studies in individualized technology. Lecture presented at

the Teacher Institute on Technology in Education, Milwaukee Diocese,
Bruce Hall, Milwaukee, September 18, 1969.

Jerman, M. Current progress in technological education. Lecture presented at

the Teacher Institute on Technology in Education, Milwaukee Diocese,
Bruce Hall, Milwaukee, September 18, 1969.

Jerman, M. Computer-assisted instruction: the state of the art. Two lectures

presented to supervisors and curriculum specialists of Detroit Public

Schools, Detroit, September 19, 1969.

Suppes, P. Research in individualized instruction--implications for facilities.
Lecture presented at 19th Annual Summer School Planning Institute,
Stanford, California, July 7, 1969.

Suppes, P. Course and curriculum development at the undergraduate level.
Informal statement and discussion at 12th Meeting of the National Science
Foundation's Advisory Committee for Science Education, Harvey Mudd College,

Claremont, California, July 11, 1969.

Suppes, P. Discussant, Symposium on Deductive Thought, XIX International
Congress of Psychology, London, England, July 29, 1969.

Suppes, P. Chairman, Symposium on Computer-assisted Instruction, XIX
International Congress of Psychology, London, England, July 30, 1969.

Suppes, P. Stimulus-response theory of finite automata and language learning.
Lecture presented at University of Minnesota, Minneapolis, August 15, 1969.

Suppes, P. Finite automata and language learning. Lecture presented at
Mathematical Psychology Meetings, University of Michigan, Ann Arbor,
August 28, 1969.

Suppes, P. Technological innovations. Lecture presented at symposium on early
learning and compensatory education, American Psychological Assocation,
Washington, D. C., August 31, 1969.

Suppes, P. Seminar with Professors R. Duncan Luce, Amos Tversky, and David
Krantz on Basic Research in the Theory of Measurement with Specific
Applications to the Behavioral Sciences, Institute for Advanced Study,
Princeton, New Jersey, September 1-5, 1969.

4-3

D. Publications

Atkinson, R. C. Computer-assisted learning in action. The Proce.7.aings of the

National Academy of Sciences, 1969, 63, 588-594.

Atkinson, R. C. Information delay in human learning. Journal of Verb. Learn.

and Verb. Behay., 1969, 8, 507-511.

Atkinson, R. C. Models for memory. In F. Bresson and M. de Montmollin (Eds.),

Sciences du comportement: La recherche en enseignement programm. Paris:

Dunod, 1929. Pp. 75-92.

Atkinson, R. C., Fruend, R. D., and Brelsford, Jr., J. W. Recognition vs.

recall: Storage or retrieval differences? Quarterly Journal of Experimental

Psychology, 1969, 21, 214-224.

Atkinson, R. C., and Rundus, D. Rehearsal processes in free recall: A procedure

for direct observation. Technical Report No. 149, August 12, 1969, Stanford

University, Institute for Mathematical Studies in the Social Sciences.

Jerman, M. Promising developments in computer-assisted instruction. Educational

Technology, 1969, 9, 10-18.

Suppes, P. Stimulus-response theory of finite automata. Journal of Mathematical

Psychology, 1969, 6, 327-355.

Suppes, P. Stimulus- response theory of automata and tote hierarchies: A reply

to Arbib. Psychological Review, 1969, 76, 511-514.

Suppes, P. Nagel's lectures on Dewey's logic. In S. Morgenbesser, P. Suppes,

and M. White (Eds.), Philosophy, Science and Method, Essays in Honor of

Ernest Nagel. New York: St. Martin's Press17767. Pp. 2-25.

Suppes, P. Computer-assisted instruction. An interview with Patrick Suppes.

The Education Digest, 1969, 3)1, 6-8.

Suppes, P. Research for tomorrow's schools: Disciplined inquiry for education.

Report of the Committee on Educational Research of the National Academy of

Education. London: Macmillan, 1969. (edited jointly with L. J. Cronbach)

Suppes, P., and Jerman, M. A workshop on computer-assisted instruction in

elementary mathematics. The Arithmetic Teacher, 1969, 16, 193-197.

Suppes, P., and Jerman; M. Some perspectives on computer-assisted instruction.

Educational Media, 1969, 1, 4-7.

Suppes, P., and Jerman, M. Computer-assisted instruction at Stanford.

Educational Television International, 1969, 3, 176-179.

Suppes, P., Loftus, E., and Jerman, M. Problem-solving on a computer-based

teletype. Educational Studies in Mathematics, 1969, 2, 1-15.

Suppes, P., Meserve, B., and Sears, P.
and Systems. New York: Singer,

Suppes, P., Meserve, B., and Sears, P.
New York: Singer, 1969.

Suppes, P., and Morningstar, M. Computer-assisted instruction. Science, 1969,

166, 343-350.

Teacher's Edition for Sets, Numbers,

1969.

Sets, Numbers, and Systems, Book 2.

6i==mion-

44

